Biological effect of calcium sources on the high levels of lead in rat's body

Sahar, O. Al - Shafei
Department of Nutrition and Food Science, Faculty of Home Economics, Menoufia University

Nehad, R. EL-Tahan
Nutrition and Food Science Dep.,
Home Economics Faculty, Menoufia University, Egypt.

Adel, Fawzy

Abstract
The main target of the present investigation was to study the effect of some calcium sources on the level of Lead in albino rats. Thirty healthy adult male albino rats "Sprague Dawley strain" weighing 5±150g, were used and divided into 6 equal groups, one was kept as a negative control group, while the second Group(5 rats) fed on basal diet with lead %0.7 (control positive group), group (3 and 4) was fed basal diet with lead and calcium chloride %0.5 and %1 respectively (as chemical calcium source), while groups (5 and 6) was fed on diet with lead %0.7 and Molokhia leaves at %5 and %10 respectively for 28 days. At the end of the experiment, feed intake (FI), body weight gain (BWG), feed efficiency ratio (FER) and relative weights of liver, kidneys and spleen were calculated. Also, serum liver functions (GOT & GPT) and kidney functions (Urea & CR) were determined in serum. Histopathological changes of liver were examined. The results indicated that rats infected lead which fed on diet with calcium chloride and molokia leaves significant increase in body weight gain, feed intake and feed efficiency and improved the liver functions and kidney functions when compared with positive control. Treating rats with calcium sources especially natural source at %10 and calcium chloride at the level %1 decreased the toxic effect of lead in rats body on tested parameters. Also, they decreased the toxic changes in cell structure of liver when compared with liver's tissues of positive control.

Key Words: Sprague Dawley Strain, calcium chloride, liver functions, kidney functions.
1. Introduction

Human activity in the last few decades has led to global contamination by organic and inorganic compounds (Sahu et al., 2007 and Chaerun et al., 2011). The presence of the pollutants generated from industrial and agriculture activities in the waterways has been identified to produce potential harmful effect on the aquatic living organisms and the food webs (Oliveira et al., 2004 and Katnoria et al., 2011). Nowadays, heavy metal contamination is considered to be among the most serious environmental problems. Heavy metals are any inorganic metallic compounds that can exert their toxicity via binding to the thiol group and disulfide bond that contribute to the stability of the enzyme (Frasco et al., 2005). The metals have high affinity to the disulfide bridge between two cysteine residues in any protein compound. Heavy metals are very dangerous to living organisms especially for humans since they can cause DNA damage and exert carcinogenic effects.

Medicinal plants play important role in individuals and communities health. The medicinal value of these plants depends on some chemical compounds that produce a definite physiological action in the human body. The most important of these bioactive constituents of plants are alkaloids tannins flavonoids and phenolic compounds (Hill, 1952). The state of medicinal plants research has been emphasized in many developing countries (Edeoga et al., 2005). The appropriate utilization of local resources to cover drugs needs is dependent on the preliminary scientific study to determine the efficacy and safety of any preparation (Burkill, 1984). The awareness of the role of medicinal plants in health care delivery of developing countries has resulted in researches into traditional medicine with a view to integrating it with modern orthodox medicine (Sofowara, 1993). Metal poisoning is a global problem with humans being exposed to a wide range of metals in varying doses and varying time frames. Traditionally, treatment involves removal of the toxic source or chelation therapy. An intermediate approach is needed. This study reported that the use of essential metal supplementation was very important as a strategy to induce metallothionein expression and displace the toxic metal from important biological systems, improving the metal burden of the patient. Specific recommendations are given for supplementation with calcium, zinc and vitamin E as a broad strategy to improve the status of those exposed to toxic metals (Wayne, 2014).

Molokhia nutrition is basically due to its green leaves. Like all other green leafy vegetables, its leaves are a rich source of vitamins, minerals...
and iron. Its leaves contain high amount of vitamin A (β-carotene) and vitamin C. It contain vitamin C up to 53mg/ 100g and vitamin A up to 12mg/ 100g It is very low in saturated fat and cholesterol and a very good source of thiamine, zinc and dietary fiber. Molokhia contains 500mg calcium/ 100g (Dayal and Singh, 2015). The biological activity of this plant may be attributed to antioxidants, such as polyphenols, vitamin C, vitamin E, beta carotene and other important pythochemicals. In a previous investigation gossypetin 3-sulphate-8-O-β-Dglucoside and hypolaetin 3-sulphate were identified as the major flavonoid constituents in the leaf tissue of molokhia. Other compounds with chemotaxonomic significance for this plant are the 8-hydroxyflavonoids so far the isolation of three 8-hydroxyflavonoid sulphates has been reported from molokhia leaves. A comparative study of the composition in nutraceuticals (phenolics, flavonoids, carotenoids, ascorbic acid, tocopherols sugars and fatty acids) and antioxidant properties of leaves. Molokhia extracts are reported for their radical scavenging effect and had negative correlation with the risks for chronic diseases such as cardiovascular diseases, arthritis, chronic inflammation and cancers (Tulio et al., 2002and Roginsky & Lissi.(2015) So, this study was designed to investigate the effect of calcium chloride and molokhia to get rid of lead toxic in albino rats. Materials and Methods Materials: Molokhia (Corchorus olitorius) were purchased from local market at Shebin El-kom, Menoufia Governorat. Casein as main source of protein obtained from Morgan Company, Cairo, Egypt. Vitamins mixture, salt mixture, calcium cholride and biological kits were purchased from El – Gomhoria Company., Cairo, Egypt. Thirty healthy adult male albino rats "Sprague Dawley strain" weighing 5±150g were used in the study. The rats were obtained from Research Institute of Ophthalmology, Medical Analysis Department, Giza, Egypt. They were housed in galvanized iron cages measuring 40× 24× 20cm (5 rats to each cage.(

Methods:
A . Preparation of samples:
Molokhia leaves were cleaned and wished for removing dust and impurities, then cut them and dried at 50°C for 24h using a fan oven. Then, they were milled by a precession mill to give powder. A grinder mill and sieves were used to obtain a powder particle size of less than 0.2mm.
B. Biological Experiments

Basal diet was prepared from fine ingredients per 100g. The diet had the following composition: Corn starch %67, Casein %13 (AIN, 1993) corn oil %10, Fiber %5, Salts mixture %4 (Hegsted et al., 1941), vitamin mixture %1 (Campbell, 1963). Calcium chloride was added to basal diet at the levels 0.5 and %1 while molokhia leaves was added to basal diet at the levels 5 and %10.

C. Experimental Design

Biological experimental was done at the central laboratory of Research Institute of Ophthalmology, Medical Analysis Department, Giza, Egypt. Rats (n = 30 rats) were housed individually in wire cages in a room maintained at 25 ± 2°C and kept under normal healthy conditions. All rats (30 rats) were fed on basal diet for one - week before starting the experiment for to learn non-lethal dose. After this week, they were divided into six main groups:

Group(1): Rats were fed on basal diet as negative control group.
Group(2): Rats were fed on basal diet with lead (%0.7) as a positive control.
Group(3): Rats were fed on diet with lead (%0.7) and calcium chloride at the level %0.5
Group(4): Rats were fed on diet with lead (%0.7) and calcium chloride at the level %1.0
Group(5): Rats were fed on diet with lead (%0.7) and molokhia at the level %5
Group(6): Rats were fed on diet with lead (%0.7) and molokhia at the level %10

D. Biological evaluation

During the experiment period (28 days), the quantities of diet which were consumed and / or wasted were recorded every day. In addition, rat's weight was recorded weekly. The body weight gain (BWG), feed intake (FI), feed efficiency ratio (FER) were determined according to (Chapman et al., 1959).

E. Biochemical evaluation and Histopathological examination

At the end of the experiment period, the rats were fasted overnight before sacrifice and the blood samples were collected from each rat and centrifuged to obtain the serum. Serum was carefully separated and transferred into dry clean ebendorf tubes and kept frozen at -20°C for analysis as described by (Schermer, 1967). Liver's rats were removed
from each rat by careful dissection, cleaned from the adhesive matter by
a saline solution(0.9%), dried by filter paper, weighed and kept in
formalin solution (10%), according to the method described by (Drury
and Walling, 1980).

F. Hematological analysis

Different tested parameters in serum were determination using
specific methods as follow: Glotamic oxaloacetic transaminas (GOT),
glotamic pyruvic transaminas (GPT), urea and creatinine according to
Kakkar et al. (1984); Aebi (1974); Ellman (1959) & Reitman and
Frankel (1957) respectively.

G. Statistical analyses

Statistical analysis was carried out using the programmer of
Statistical Package for the Social Sciences (SPSS), PC statistical soft
ware (Version 20; Untitled–SPSS Data Editor). The results were
expressed as mean ± Standard deviation (mean ± S.D.). Data were
analyzed using one way classification, analysis of variance (ANOVA).
The differences between means were tested for significance using least
significant difference (LSD) test at p< 0.05 (Snedcor and Cochran,
1979).

Results and Discussion

In the current study the effect of calcium chloride and molokhia to
get rid of toxic lead in rat's body.

1- **Effect of some calcium sources to high doses of lead on body
weight gain (BWG).**

Data presented in table (1) showed the effect of some calcium sources to
high doses of lead on body weight gain (BWG). It could be noticed that
differences between all mean values of these groups were significant
when compared to control negative group. With expecting, %0.07
lead group was the lowest value of body weight gain. There were no
significant differences in BWG among group 4 and 5. The best result
was group 6 which fed on lead %0.7 and molokhia at the level %10.
Potential health problems associated with a high intake of products
which contain salt of Lead have been linked to decreased energy intakes,
weight gain and the weight loss epidemic as indicated by Katnoria et
al. (2011). Meanwhile, Oliveira et al. (2004) found that the rising
consumption of vegetables fertilizer and meat additives provides a rising
intake of lead which can contribute to weight loss and underweight.
Also, study done by Frasco et al. (2005) increased lead consumption
would decrease total energy intake by decreased appetite and decreased
fat intake. Dayal and Singh (2015) found that high intake of molokhia
which used as food additives in soft foods, has been linked to increase body weight. This effect led to high content of dietary fiber, phenols as antioxidants compound. Also, they found that molokhia leaves increased weight gain to contained many biological active compounds including chymopapain and papain which is the ingredient that aids digestive system and a good supply of vitamin A and C that are highly essential for maintaining a good health.

Table (1): Effect of some calcium sources to high doses of lead on body weight gain (BWG).

<table>
<thead>
<tr>
<th>Groups</th>
<th>BWG g / 28 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control(G1)</td>
<td>40.64 ± 4.21</td>
</tr>
<tr>
<td>Group (2)</td>
<td>4.61 ± 0.13</td>
</tr>
<tr>
<td>Group (3)</td>
<td>10.74 ± 0.21</td>
</tr>
<tr>
<td>Group (4)</td>
<td>19.54 ± 1.11</td>
</tr>
<tr>
<td>Group (5)</td>
<td>16.68 ± 1.2</td>
</tr>
<tr>
<td>Group (6)</td>
<td>25.15 ± 2.19</td>
</tr>
<tr>
<td>LSD</td>
<td>3.48</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly different ($P \leq 0.05$)

2- Effect of calcium sources to high doses of lead on feed intake (FI) and feed efficiency ratio (FER).

Data present in table (2) showed the effect of calcium sources to high doses of lead on feed intake (FI) and feed efficiency ratio (FER) (mean ± SD). It is clear that there is no significant differences in feed intake (FI) between groups 4, 5and negative control group. From the table, it could be noted that the differences in values of feed intake between all treated groups were considerable as compared to negative and positive control groups. The obtained data revealed a high variation in feed intake between treatments and the controls group, this may be due to the acceptability of the added material. These results are in accordance with those reported by Frasco et al. (2005) who found that
lead decreased appetite and decreased fat intake. Calliste et al. (2001) reported that molokhia leaves is a source of antioxidants vitamin as A and C that prevents damage caused by free radicals that may cause some forms of cancer.

According to data present in the same table (2), it could be observed that feed efficiency ratio (FER) for groups there is no significant changes among 3,4 and 6. These results denote that there were significant increases in feed efficiency ratio (FER) for group 5 when compared with control positive group. From the obtained results, it could be observed that treating rats with the tested calcium sources led to increase in BWG, FI and FER when compared with positive controls while lower than negative control. These results were in agreement with those reported by Calliste et al. (2001) who found that calcium from vegetables led to decrease the toxicity of free radical. Barroet al. (2010) stated that dietary fiber of molokhia had bioactive compounds with antioxidant properties, such as flavonoids and vitamin C.

Table (2): Effect of some calcium sources to high doses of Lead on feed intake (FI) and feed efficiency ratio (FER) (mean± SD).

<table>
<thead>
<tr>
<th>Groups</th>
<th>FI (g/day)</th>
<th>FER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control(G1)</td>
<td>11.71 ± 0.22</td>
<td>0.124 ± 0.001</td>
</tr>
<tr>
<td>Group (2)</td>
<td>2.83 ± 0.11</td>
<td>0.058 ± 0.001</td>
</tr>
<tr>
<td>Group (3)</td>
<td>4.76 ± 0.12</td>
<td>0.081 ± 0.002</td>
</tr>
<tr>
<td>Group (4)</td>
<td>8.68 ± 0.27</td>
<td>0.081 ± 0.002</td>
</tr>
<tr>
<td>Group (5)</td>
<td>5.7 ± 0.24</td>
<td>0.104 ± 0.001</td>
</tr>
<tr>
<td>Group (6)</td>
<td>9.86 ± 0.37</td>
<td>0.091 ± 0.002</td>
</tr>
<tr>
<td>LSD</td>
<td>2.32</td>
<td>0.016</td>
</tr>
</tbody>
</table>
Means in the same column with different litters are significantly different (P ≤ .05)

3- **The effect of some calcium sources to high doses of lead on kidney functions(mean± SD.)**

Data given in table (3)showed the effect of some calcium sources to high doses of lead on serum urea levels(mean± SD.)

It could be observed that the highest value of serum urea levels was found in rats which received lead as positive control group. No significant changes were found in serum urea levels between groups 3, 4 and 5also, there is no significant between group 1and 6

It is clear that in control negative group creatinine levels was 0.46 ± 0.02mg/dl which significantly decreased when compared with rats which received the levels %0.7lead salt as positive control and groups fed on these material with all types of calcium sources. Meanwhile, rats of groups 3,4and 5which received calcium sources , creatinine levels of these groups were non significant between each other and showed significantly increasing as compared to control negative group. Groups 6 was the lowest creatinine value which showing a significant decreased as compared to the other groups and a significant increased when compared with control negative group.

Table (3): Effect of some vegetables and fruit to high doses of lead and mercury on serum urea and creatinine levels(mean± SD.)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Urea (mg/dl)</th>
<th>Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control(G1)</td>
<td>37c ± 4.23</td>
<td>0.46d ± 0.12</td>
</tr>
<tr>
<td>Group (2)</td>
<td>48.33</td>
<td>1.45a ± 0.22</td>
</tr>
<tr>
<td>Group (3)</td>
<td>44.33b ± 4.12</td>
<td>1.33b ± 0.35</td>
</tr>
<tr>
<td>Group (4)</td>
<td>42.6bc ± 2.4</td>
<td>1.31b ± 0.64</td>
</tr>
<tr>
<td>Group (5)</td>
<td>42.23bc ± 2.72</td>
<td>1.27bc ± 0.15</td>
</tr>
<tr>
<td>Group (6)</td>
<td>40c ± 0.7</td>
<td>1.15c ± 0.24</td>
</tr>
<tr>
<td>LSD</td>
<td>3.03</td>
<td>0.063</td>
</tr>
</tbody>
</table>
Means in the same column with different litters are significantly different \((P \leq 0.05)\).

4- The effect of some calcium sources to high doses of lead on liver functions (mean± SD).

Data presented in table (4) showed the effect of some calcium sources to high doses of lead on levels of serum GOT (mean± SD).

It could be observed that in control negative group GOT was \(2 \pm 39\) u/l which significantly increased in positive control group which it were being \(103 \pm 3\) u/l But, the levels of GOT in groups 3, 4, 5 and 6 showed significant increases as compared to control negative group and significant decreases as compared to control positive group. Also, there were no significant changes between groups of 4 and 5. The strongest effect in serum GOT levels recorded for group 6 which fed on basal diet with %10 molokhia leaves.

It is clear that the serum level of (GPT) in group 6 which fed on lead with %10 plant leaves was the lowest level which being \(58.66 \pm 3.34\) U/L. At the same time, rats which received lead with %1 calcium chloride and lead with %5 plant leaves didn’t significantly different in serum level of GPT.

Edeoga et al. (2005) revealed that lead had a potential role to cause injuries in several organs and tissues. The increased consumption of lead sources in foods and drinks is linked with the hepatic metabolism and caused lipogenesis and ATP depletion, which leads to fat accumulates in the liver by the primary effect of NO oxidation. It could be hypothesized that increased lead sources consumption contributes to the development of non-alcoholic fatty liver disease (NAFLD) which can progress to cirrhosis over time in some individuals.

Calliste et al. (2001) showed that molokhia is one of the most important food which containing phenolic antioxidant compound and calcium (%20.3) which protected liver from any free radical.

Dayal and Singh (2015) found that molokhia extraction contained dietary fiber or essential oils, the flavonoids hesperidin and calcium which reduced the residual lead levels and the degree of lipid oxidation.

Acutely absorbed lead is distributed first to the blood where %98 of the lead becomes bound in the red blood cells, the remainder is available for redistribution to the soft tissues such as the liver, kidneys, lung, brain, muscles and heart (Ide and Parker, 2005). Frank et al., (2005) investigated the influence of high dietary calcium (Ca) (%1.1) on the
biochemical and morphological manifestations of Pb and Zn toxicity, and to determine the effect of excess Zn on Pb toxicity. The results indicate that high dietary Ca has a protective effect against the adverse effects of diet Pb and Zn, and that Zn aggravates Pb toxicity in growing pigs. It is known since many years that the amount of calcium in food influences tissue lead accumulation. Most data are related to animal studies, but data from human studies are also available. Epidemiological studies on a general population have shown that calcium content in the food is inversely correlated with lead in blood, bone or hair (Haser et al., 2016).

Table (4): Effect of some calcium sources to high doses of Lead on serum levels of GPT and GPT(mean± SD).

<table>
<thead>
<tr>
<th>Groups</th>
<th>GOT(UL)</th>
<th>GPT(UL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative control(G1)</td>
<td>39 ± 2</td>
<td>45 ± 0.6</td>
</tr>
<tr>
<td>Group (2)</td>
<td>103 ± 3</td>
<td>87 ± 2.3</td>
</tr>
<tr>
<td>Group (3)</td>
<td>94 ± 7</td>
<td>77 ± 3.8</td>
</tr>
<tr>
<td>Group (4)</td>
<td>86 ± 5</td>
<td>69.66 ± 0.34</td>
</tr>
<tr>
<td>Group (5)</td>
<td>84 ± 6</td>
<td>65 ± 3.6</td>
</tr>
<tr>
<td>Group (6)</td>
<td>76 ± 5</td>
<td>58.66 ± 3.34</td>
</tr>
<tr>
<td>LSD</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Means in the same column with different litters are significantly different. (P ≤ 0.05)

Histopathological results

A-Liver:

Liver's rat which fed on basal diet, the liver structure showing the normal histological (photo 1). In photo(2), Liver's rat which fed on basal diet with lead %0.7 showed that congestion of central vien and hepatic sinusoids and kupjjer cells activation and with local hepatic necrosis associated mononuclear cells infiltration. Liver's rat which fed on basal
diet with lead %0.7 and o. %5 calcium chloride showed that hydropic degeneration of hepatocytes. Liver's rat which fed on basal diet with %0.7 lead and calcium chloride %1 showed that slight hydropic degeneration of hepatocytes (Photo 4). Liver's rat which fed on basal diet with lead %0.7 and molokhia %5 showed that slight activation of kupjjer cells (Photo 5). Liver's rat which fed on basal diet with lead %0.7 and molokhia leaves %10 showed that no histopathological changes (Photo 6).

REFERENCES

Ellman, G.L.(1959) :"Tissue sulphydry 1groups". Arch.Biochem.Biophys., 82: 77-70

Schermer, S. (1967): The Blood Morphology of Laboratory Animal. Longmans, Printed in Great Britain, Green and Co. LTD, P. .350

تأثير البيولوجي لمصادر الكالسيوم على المستويات العالية من الرصاص في جسم الفأر
عادل فوزي فؤاد، سحر عثمان الشافعي، نهاد شداد الطحان
قسم التغذية وعلوم الأطعمة، كلية الاقتصاد المنزلي، جامعة المنوفية

المملص

الهدف الأساسي من البحث هو دراسة مدى تأثير مصادر الكالسيوم على مستوي الإصابة بالتسمم الرصاصي في الفئران البيضاء حيث تم استخدام 30 فأر من سلالة سبارك داوني على وزن 150 ± 5 جم وقسمت إلى (6) مجموعات من (1 إلى 6) كل مجموعة تحتوي على 5 فئران على أساس أن تكون المجموعة الأولى كمجموعة ضابطة سالب، وال مجموعة الثانية كمجموعة ضابطة موجب حيث تغذت على الرصاص بنسبة 0.7%، والمجموعات (3 ، 4) تغذت على الرصاص بنسبة 0.7% وكلوريد الكالسيوم بنسبة 0.5% ، 1% بينما المجموعات (5 ، 6) تغذت على الوجهة الضابطة (الرصاص) بها 0.7% والملوخية الحافة بنسبة 0.5% ، 1% على التوالي لمدة 28 يوم، في نهاية التجربة تم أحتساب المأخوذ من الطعام، والوزن المكتسب ومدي كفاءة وظائف الكبد (جلوتاميك أوكسالاستيك ترانسامينز و جلوتاميك بيروفيك ترانسامينز) ووظائف الكلية (البوريا والكرياتين) وتم تقديرها في السيرم.

تم فحص تغيرات الهيستوبيولوجية للكبد، وقد أوضحت النتائج أن الوجهات التي أحتوت على كلوريد الكالسيوم وأوراق الملوخية أدت إلى زيادة الوزن والتأثير من الطعام ومدي كفاءة الوجهة وأيضاً تحسن ملحوظ لوظائف الكبد والكلية وذلك عند المقارنة بالمجموعة الضابطة الموجهة، بالإضافة إلى أن معالجة الفئران بمصادر الكالسيوم وخاصة المصادر الطبيعية عن مستوي 1% وكلوريد عند مستوي 1% أدى إلى خفض التأثير السام على المقايس المختبرة في جسم الفئران، أيضا أدى إلى تقليل التأثير السام في تركيب خلايا الكبد عند مقارنتها بخلايا الكبد للمجموعة الضابطة.

الكلمات الإفتتاحية:
وظائف الكلية - وظائف الكبد - سلالة سبارك داوني - كلوريد الكالسيوم