Effect of high caloric foods with some probiotic bacteria on the healthy status of rats

*Nehad R. EL-Tahan, **Hanan, S.H.
Nutrition and Food Science Dep., Faculty of Home Economics, Menofia University, Egypt
**Home Economic Dept. Fac. of Specific Education. Monifiya University

Abstract:

The effect of different percent of high caloric food components (Lupine, cicer and soyprotien) with probiotics bacteria on some biological and histological parameters of albino rats were studied. Twenty four adult male rats were distributed into four groups, the first one was kept as control group, while the other three groups were fed on high caloric diet and supplemented with some probiotic bacteria for 9 weeks. Results showed that body weight gain was markedly higher especially in the mixture of probiotics (1 and 2%) compared to control group and group which fed without probiotics. Also, the mixture at 2% high caloric food and 1% probiotics lowered concentrations of total cholesterol, triglycerides, LDL-c, VLDL-c and decreased activity of AST and ALT enzymes in normal range. Furthermore, all mixture caused significant increase in HDL-c and total immunoglobulin production (IgG, IgM, IgE, IgA) were higher than the mixture (2% lupine, chickpea, soyprotien) without probiotics.

Histopathological examination showed amelioration of histopathological lesions seen in liver of rats received the mixture of seeds at different levels with probiotics. So, it could be recommended that intake of the mixture of lupine, chickpea, soyprotien especially at 1 and 2% from probiotics respectively because it may be useful for product high caloric food.

Key words: Male rats, lupine, chickpea, soyprotien, probiotics, histopathological structure.
INTRODUCTION

A probiotic is defined classically as a viable microbial dietary supplement that beneficially affects the host through its effects in the intestinal tract. This definition, however, was initially intended for use with animal feed products. For human nutrition, the following definition has been proposed: A live microbial food ingredient that is beneficial to health (Salminen et al., 1998).

A prebiotic is defined as a non-digestible food ingredient that beneficially affects the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon. Modification by prebiotic of the composition of the colonic microflora leads to the predominance of a few of the potentially health-promoting bacteria, especially, but not exclusively, lactobacilli and bifidobacteria (Gibson and Roberfroid, 1995).

Bellisle et al., (1998) found that a food can be said to be functional if it contains a component (which may or may not be a nutrient) that affects one or a limited number of functions in the body in a targeted way so as to have positive effects on health or if it has a physiologic or psychologic effect beyond the traditional nutritional effect (Clydesdale, 1997).

Among the most promising targets for functional foods are the gastrointestinal functions, including those that control transit time, bowel habits, and mucosal motility as well as those that modulate epithelial cell proliferation. Promising targets are also gastrointestinal functions that are associated with a balanced colonic microflora, that are associated with control of nutrient bioavailability (ions in particular), that modify gastrointestinal immune activity, or that are mediated by the endocrine activity of the gastrointestinal system. Finally, some systemic functions such as lipid homeostasis that are indirectly influenced by nutrient digestion or fermentation as lactobacilli and bifidobacteria represent promising targets (Roberfroid, 2000).

Legumes have played an important role in the traditional diets of many regions throughout the world. It is difficult to think of the cuisines of Asia, India, South America, the Middle East, and Mexico without picturing soybeans, lentils, black beans, chickpeas, and pinto beans, respectively. In contrast, in many Western countries beans play a less significant dietary role. In fact, bean intake has actually declined during the past century in many European countries (Hellendoorn, 1976).
The lupin is devoid of starch, which is very unusual for a species of edible bean. Lupins have a thick seed coat (25%) which consists mainly of cellulose (insoluble fibre-bran) and its removal is the first step in lupin processing. The kernel (split) of lupin is rich in protein (40%), fibre (40%) and moderate in fat (8%) made up largely of unsaturated fatty acids. Intensive plant breeding programs have ensured that modern lupin varieties have relatively low levels of the alkaloids found in their ancestral genotypes. Lupins also contain moderate amounts of carotenoids; beta carotene, lutein, zeaxanthin and tocopherols (Vitamin E). Australian sweet lupin features a higher calcium and phosphate content than cereals with trace element content varying in line with the mineral content of the soil in which the lupin is grown. Lupin oils have high antioxidant capacities due in part to the presence of tocopherol (Vitamin E – the total vitamin E content is about 2.3-4.6 mg/kg of oil) (Williamson et al., 1994).

Chickpea (Cicer arietinum L.) is one of the world's most important grain legumes (FAO, 1993) because it is a valuable source of protein, minerals and vitamins, and plays a very important role in human diets in many areas of the world. Chickpea is an excellent source of protein, carbohydrates, and fiber, and provide many essential vitamins and minerals. Their highly nutritional properties have been associated with many beneficial health-promoting properties, such as managing high cholesterol and type-2 diabetes and in the prevention of various forms of cancer. The main antioxidant compounds in legumes are vitamins C and E, phenolic compounds and reduced glutathione (GSH). Different studies have shown that they have a protective antioxidant effect on cancer and cardiovascular diseases (Mallillin et al., 2008 and Murty et al., 2010)

Soybean protein is a "complete protein" since it provides all of the essential amino acids for human nutrition. Soybean protein is essentially identical to that of other legume pulses and is one of the least expensive sources of dietary protein. For this reason, soy is important to many vegetarians and vegans. Soy flour contains 50% protein. The digestibility of some soy food are as follows: Steamed soybeans 65.3%, tofu 92.7%, soy milk 92.6%, and soy protein isolate 93–97%. Consumption of soy protein in place of animal protein has been found to reduce serum concentrations of total cholesterol, low-density lipoproteins (LDLs) and triglycerides. One theory proposes that cholesterol absorption is impaired or altered. Another theory postulates
that phytoestrogens (plant compounds that have hormone-like effects; isoflavones are the phytoestrogens found in soy products) bind to estrogen receptors and produce similar effects including lowering LDLs and increasing high-density lipoproteins, vasomotor tone changes, and arterial wall function (Hasler, 2002).

So, this research aimed to study the effect of these legumes mixture with probiotic on some biological and histopathological parameters.

MATERIALS AND METHODS

Lupine, chickpea and soy protein were obtained from the local market of seeds and probiotics were obtained and scientifically identified at Horticultural Research Institute, Agriculture Research Center, Egypt. All chemicals and diagnostic kits were purchased from El-Gomhoria Co., Cairo, Egypt.

Experimental animals: This study was carried out on twenty four adult male Sprague Dawley albino rats weighing 160±5 g body weight. The rats were obtained from Laboratory Animal Colony, Helwan, Egypt. Before their use in the experiment, the rats were kept for one week for acclimatization to the laboratory conditions. They were fed on basal diet and provided with water and food ad libitum.

The basal diet consisted of casein (10%), cellulose (5%) salt mixture (4%), vitamin mixture (1%), corn oil (10%) and corn starch (70%) according to Reeves et al. (1993).

Experimental procedure: Rats were divided into four groups consisting of six rats each. The first group was fed on the basal diet and kept as a control group, while the other groups were fed on lupine chickpea and soy protein with probiotics for 9 weeks as the following: Group (2) 2% mixture of lupine, chickpea and soy protein without probiotics. Group (3) 2% mixture of lupine, chickpea with 1% probiotics. Group (4) 2% mixture of lupine, soy protein and 2% probiotics.

During the experiment period, the feed intake and body weight were recorded weekly. Body Weight Gain (BWG) and Feed Efficiency Ratio (FER) were calculated at the end of the experimental period according to the following equations: BWG (g) = final weight (g) - initial weight (g) FER = weight gain (g)/feed intake (g).

Collection of blood samples and organs: At the end of the experimental period, rats were sacrificed following a 12 h fast. The rats were lightly anaesthetized by ether and about 7 ml of blood was
withdrawn from the hepatic portal vein into dry centrifuge plastic tubes. Blood portal vein into dry centrifuge plastic tubes. Blood separate the serum samples which were kept in tubes at -20 ºC till biochemical analysis (Jeyakumar et al., 2006).

Biochemical analysis: Serum total cholesterol was calorimetrically determined according to Allain et al. (1974) and triglyceride was determined calorimetrically according to Wahlefeld (1974). High Density Lipoprotein cholesterol (HDL-c) was determined calorimetrically according to Richmond (1973). Low Density Lipoprotein cholesterol (LDL-c) and Very Low Density Lipoprotein cholesterol (VLDL-c) were determined according to Friedewald et al. (1972).

The activity of Aspartate Aminotransferases (AST) and Alanine Aminotransferases (ALT) enzymes were assigned by the method of Bergmeyer et al. (1978), total immunoglobulin (IgG, IgM, IgE and IgA) determined by Radioimmunoassay as described by the method of Patrono and Peskar (1987).

Histopathological study: Livers of the scarified rats were dissected, removed, washed with normal saline and put in 10% formalin solution. The fixed specimens were then trimmed, washed and dehydrated in ascending grades of alcohol. The tissue specimens were cleared in xylene, embedded in paraffin, sectioned at 4-6 microns thickness, stained with Hematoxylen and Eosin (H and E) and then studied under an electronic microscope according to (Carleton, 1979).

Statistical analysis: Results are expressed as mean values with their standard deviation of the mean. Statistical differences between groups were evaluated using one-way ANOVA followed by Duncan post hoc test using SPSS version 11.0 for Windows (SPSS, Chicago, IL, USA). Differences were considered significant at (p<0.05) according to Snedecor and Cochran (1986).

RESULTS

1-Effect of mixture of lupine, chickpea, soyprotien and probiotic on feed intake (FI), body weight gain (BWG) and feed efficiency ratio (FER) in normal rats.

Data in table (1) showed that feeding on mixture in group (4) which fed on 2% mixture of lupine, chickpea, soyprotien and 2% probiotics led to increase the feed intake which was near to the normal group. The feed intake of the other tested groups were lower than the group (4). There is no significant changes between group 1 and 2. The group (2)
which fed on 2% mixture of lupine, chickpea and soy protein without probiotics was the lowest feed intake. There were significant differences between control group and the groups 3 and 4. In case of feed efficiency ratio, the fourth group was the best group and there is no significant change between this group and the control group. The lowest group for FER was the fourth group. This results were matched with Salminen et al. (1998) who found that probiotic improve the feed intake and body weight of rats. Probiotic as functional foods enhanced the gastrointestinal functions, including those that control transit time, bowel habits, and mucosal motility as well as those that modulate epithelial cell proliferation (Clydesdale, 1997).

Table (1): Effect of mixture of lupine, chickpea, soy protein and probiotic on feed intake (FI), body weight gain (BWG) and feed efficiency ratio (FER) in normal rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Groups</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed intake g/day</td>
<td></td>
<td>12.58(\pm0.38)</td>
<td>12.73(\pm1.01)</td>
<td>13.9(\pm0.18)</td>
<td>14.08(\pm0.75)</td>
</tr>
<tr>
<td>BWG g / 9 weeks</td>
<td></td>
<td>55.41(\pm0.56)</td>
<td>57.17(\pm4.42)</td>
<td>70.27(\pm3.01)</td>
<td>70.58(\pm2.32)</td>
</tr>
<tr>
<td>FER</td>
<td></td>
<td>0.104(\pm0.01)</td>
<td>0.107(\pm0.06)</td>
<td>0.120(\pm0.01)</td>
<td>0.119(\pm0.01)</td>
</tr>
</tbody>
</table>

Values are mean±SD. Values in the same column sharing the same superscript letters are not statistically significantly different at (p≤0.05)

2-Effect of mixture of lupine, chickpea, soy protein and probiotic on serum lipids

Administration of the mixture of lupine, chickpea, soy protein, and probiotics at different levels caused significant decreases in serum of total cholesterol, triglycerides, LDL-c and VLDL-c compared to control group (Table 2). Serum HDL-c levels increased but not significantly by the administration of the mixture of lupine, cicer, soy protein and probiotics. Rats that were given 2% mixture of lupine, chickpea, soy protein and 2% probiotic bacteria (group 4) showed significantly higher levels of HDL-c compared to control group. The value of groups 2 and 3 were lower for HDL-c than control group while it was higher for the other lipid parameters than the group (4). The obtained results in the same line of Hasler (2002) who found that soy protein can decrease
LDL-c, total cholesterol and increase the level of HDL-c. Also, Clydesdale (1997) reported that probiotics reduce the absorption of lipids from diet.

Table (2): Effect of mixture of lupine, chickpea, soyproien and probiotic on serum lipids

<table>
<thead>
<tr>
<th>Serum lipids</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cholesterol</td>
<td>74.43 a</td>
<td>75.23 a</td>
<td>74.36 a</td>
<td>71.43 b</td>
</tr>
<tr>
<td></td>
<td>±0.19</td>
<td>±3.05</td>
<td>±1.12</td>
<td>±0.31</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>75.48 a</td>
<td>75.8 a</td>
<td>75.68 a</td>
<td>70.96 b</td>
</tr>
<tr>
<td></td>
<td>±1.13</td>
<td>±1.33</td>
<td>±2.63</td>
<td>±0.56</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>52.94 a</td>
<td>46.87 b</td>
<td>46.92 b</td>
<td>53.94 a</td>
</tr>
<tr>
<td></td>
<td>±2.12</td>
<td>±1.05</td>
<td>±0.03</td>
<td>±0.05</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>21.2 b</td>
<td>23.9 a</td>
<td>23.1 a</td>
<td>19.1 c</td>
</tr>
<tr>
<td></td>
<td>±0.17</td>
<td>±0.34</td>
<td>±1.91</td>
<td>±0.91</td>
</tr>
<tr>
<td>VLDL-cholesterol</td>
<td>1.19 b</td>
<td>1.46 a</td>
<td>1.14 b</td>
<td>1.13 c</td>
</tr>
<tr>
<td></td>
<td>±0.17</td>
<td>±1.34</td>
<td>±0.91</td>
<td>±0.91</td>
</tr>
</tbody>
</table>

Values are mean±SD. Values in the same column sharing the same superscript letters are not statistically significantly different at (p≤0.05)

3- Effect of mixture of lupine, chickpea, soyproien and probiotic on liver function enzymes in normal rats.

From data presented in table (3) the administration of 2% mixture of lupine, chickpea, soyproien and 2% probiotics significantly activated AST and ALT level when compared with the groups 1 and 3. There is no significant differences between group 1 and 3 for ALT and AST. While, there significant changes between group 2 and the other groups. From the above results, it could be noticed that crude fiber in legumes is a group of indigestible carbohydrates. It can improve the function of the alimentary tract and also lower blood glucose, cholesterol levels and improve liver functions in normal range (Roberfroid, 2000).

Table (3): Effect of mixture of lupine, chickpea, soyproien and probiotic on liver function enzymes in normal rats.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST(U/L)</td>
<td>28.8 c</td>
<td>44.2 a</td>
<td>28.7 c</td>
<td>30.1 b</td>
</tr>
<tr>
<td></td>
<td>±1.07</td>
<td>±1.11</td>
<td>±0.15</td>
<td>±0.56</td>
</tr>
<tr>
<td>ALT(U/L)</td>
<td>20.8 c</td>
<td>30.9 a</td>
<td>20.7 c</td>
<td>22.7 b</td>
</tr>
<tr>
<td></td>
<td>±0.91</td>
<td>±0.91</td>
<td>±3.25</td>
<td>±2.02</td>
</tr>
</tbody>
</table>

Values are mean±SD. Values in the same column sharing the same superscript letters are not statistically significantly different at (p≤0.05)
4- Effect of mixture of lupine, chickpea, soyprotiен and probiotic on immunological productions.

From table (4), it could be observed that administration of the tested legumes and probiotics at (1:1:1:1) it is affect to rats activity (group 6). The mixture of seeds (lupine, chickpea, soyprotiен and probiotics bacteria induced significant increases in serum levels of immunological profile compared to control group. All other tested mixture of legumes caused non significant changes in serum level of immunological productions. The main antioxidant compounds in legumes are vitamins C and E, phenolic compounds. So, different studies have shown that they have a protective antioxidant effect on immunity status, cancer and cardiovascular diseases (Mallillin et al., 2008 and Murty et al., 2010)

Table (4): Effect of mixture of lupine, chickpea, soyprotiен and probiotic on immunological productions.

<table>
<thead>
<tr>
<th>Immunological Profile mg/dl</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgE</td>
<td>60.17 ± 1.15</td>
<td>59.5 ± 0.2</td>
<td>61.87 ± 1</td>
<td>62.99 ± 1.11</td>
</tr>
<tr>
<td>IgM</td>
<td>106.65 ± 0.9</td>
<td>109.93 ± 1.5</td>
<td>109.66 ± 2.5</td>
<td></td>
</tr>
<tr>
<td>IgA</td>
<td>1115.66 ± 25.16</td>
<td>1116.66 ± 11.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean±SD. Values in the same column sharing the same superscript letters are not statistically significantly different at (p≤0.05)

Histopathological examination of liver of the negative control rats fed on basal diet revealed normal histological picture of hepatic lobule which consists of central vein surrounded by normal hepatocytes as shown in (photo. 1). Examination of liver of group (2) showed of hepatocytes and infiltration of leucocytes in hepatic sinusoid (photo. 2). Liver of rats given the mixture and probiotic showed little vacuolar degeneration of hepatocytes and some improvement in degeneration (photo. 3). In addition, portal edema and few leucocytes infiltration in hepatic lobule were observed the second mixture of seeds (photo. 4). Liver and the third mixture (G4) showed marked improvements with no observed pathological lesions (photo 5) and (photo 6). These results were according to Mallillin et al. (2008) and Murty et al. (2010) who found that probiotic at level 1% and the legumes at the levels 1:1:1 can keep the liver tissue in normal status without any changes and improve the cells structure more than control group.
DISCUSSION

Several studies have showed that each of Soyprotien have long been recognized as an excellent source of high-quality protein. The soyprotien also contains a wide variety of chemical compounds that have potent bioactivity. Among these compounds are the isoflavones and the saponins. The goal of our research was to quantify isoflavone and saponin concentrations in elite soybean cultivars grown in different environments and to identify a naturally occurring high and low variety that could be used in animal studies of colon cancer. We observed significant environment × genotype interactions for the cultivars and selected 2 that provided the range of concentration for isoflavones and saponins. These were grown in an adequate quantity for animal studies, which are ongoing. They explored the influence of isoflavones and saponins on human colon tumor cells in culture, Caco-2, to determine potential mechanisms through which these compounds influence the carcinogenic process. We observed the inhibition of Caco-2 cell proliferation by isoflavones and saponins, suggesting a protective effect of these compounds in colon cancer. Using purified soy saponins, we found no negative effects on mouse growth, organ weights, or intestinal

Photos (1): Histopathological changes detected in the liver of negative control, mixture (1), mixture (2) and mixture (3).
morbidity when the diet contained up to 3% saponins by weight. Hence, soy isoflavones and saponins are likely to be protective of colon cancer and to be well tolerated. Continuing studies will explore the cancer-protective effects of these compounds in animal models (Ruth et al., 2012).

Ingesting oligosaccharides such as raffinose and stachyose, namely, encouraging indigenous bifidobacteria in the colon against putrefactive bacteria.

The insoluble carbohydrates in soyproteins consist of the complex polysaccharides cellulose, hemicellulose, and pectin. The majority of soybean carbohydrates can be classed as belonging to dietary fiber.

Within soybean oil or the lipid portion of the seed is contained the phytosterols: stigmasterol (17–21%), sitosterol (53–56%) and campesterol (20–23%) accounting for 2.5% of the lipid fraction.

Saponins, a class of natural surfactants (soaps), are sterols that are present naturally in a wide variety of food-plants: vegetables, legumes, and cereals—ranging from beans and spinach to tomatoes, potatoes and oats. Whole soybeans contain from 0.17 to 6.16% saponins, 0.35 to 2.3% in defatted soy flour and 0.06 to 1.9% in tofu. Legumes such as soybean and chickpeas are the major source of saponins in the human diet. Sources of non-dietary saponins include alfalfa, sunflower, herbs and barbasco. Recent studies have shown that saponins are potential functional food ingredients because of their physiological properties.

Soy contains isoflavones like genistein and daidzein. It also contains glycine, an O-methylated isoflavone which accounts for 5–10% of the total isoflavones in soy food products. Glycine is a phytoestrogen with weak estrogenic activity, comparable to that of the other soy isoflavones (Song et al., 1999).

Chickpea (Cicer arietinum L.) is an important pulse crop grown and consumed all over the world, especially in the Afro-Asian countries. It is a good source of carbohydrates and protein, and the protein quality is considered to be better than other pulses. Chickpea has significant amounts of all the essential amino acids except sulfur containing types, which can be complemented by adding cereals to daily diet. Starch is the major storage carbohydrate followed by dietary fiber, oligosaccharides and simple sugars like glucose and sucrose. Lipids are present in low amounts but chickpea is rich in nutritionally important unsaturated fatty acids like linoleic and oleic acid. β-sitosterol, campesterol and stigmasterol are important sterols present in chickpea oil. Calcium, magnesium, phosphorus and especially potassium are also present in chickpea seeds. Chickpea is a good source of important vitamins such as riboflavin, niacin, thiamin, folate and the vitamin A precursor, β-carotene. Like other pulses, chickpea seeds also contain anti-nutritional factors which can be reduced or eliminated by different cooking techniques. Chickpea has several potential health benefits and, in
combination with other pulses and cereals, it could have beneficial
effects on some of the important human diseases like cardiovascular
disease, type 2 diabetes, digestive diseases and some cancers. Overall,
chickpea is an important pulse crop with a diverse array of potential
nutritional and health benefits (Jukanti, 2012).

Australian Sweet Lupins (Lupinus angustifolius) are high in protein,
dietary fiber and antioxidants, very low in starch, and are gluten-free.
Lupins can be used to make a variety of foods both sweet and savoury
including everyday meals, traditional fermented foods, baked foods and sauces.

The lupin is devoid of starch, which is very unusual for a species of
edible bean. Lupins have a thick seed coat (25%) which consists mainly
of cellulose (insoluble fiber-bran) and its removal is the first step in lupin
(Putnam et al., 1997).

Processing. The kernel (split) of lupin is rich in protein (40%), fiber
(40%) and moderate in fat (8%) made up largely of unsaturated fatty
acids. Intensive plant breeding programs have ensured that modern lupin
varieties have relatively low levels of the alkaloids found in their
ancestral genotypes. Lupins also contain moderate amounts of
carotenoids; beta carotene, lutein, zeaxanthin and tocopherols (Vitamin E).

Australian sweet lupin features a higher calcium and phosphate
content than cereals with trace element content varying in line with the
mineral content of the soil in which the lupin is grown.

Lupin oils have high antioxidant capacities due in part to the
presence of tocopherol (Vitamin E the total vitamin E content is about
2.3-4.6 mg/kg of oil (Gladstone et al., 1998).

Effect of seeds and probiotic on immunological its effect on
increasing antioxidant enzymes could be indirect result of their effect
on lipids metabolism. The histopathological results showed that rats supplemented with
mixture of lupine, cicer, soybean and probiotic bacteria at 1 and 2% can
prevent/reduce diet induce fatty liver. This fat reduction in the liver was
confirmed by serum lipid analysis and by measurement of liver specific
marker enzymes as mentioned before (Zafar & Mujahid, 1998 and

On the basis of the present results, it could be conclude that seeds
mixture at 2% of lupine, chickpea, soyprotein and 2% probiotics may
have synergistic effect and its intake of be useful for product high caloric
food supplemented with probiotic bacteria (lactobacillis
, bifidobacterium) accompanied by hyperlipidemia as it reduces feed
intake and body weight, improves serum lipid profile, liver function and
immunological activity in rats. Moreover, this mixture has a promising
effect on the liver tissues as it ameliorates the histopathological lesions
seen in this organ of rats.
REFERENCES
Jukanti, A .K; Gaur, P. M. and Gowda1 C. L. L.(2012): Chibbar2 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, AP 502 324, India Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8.

تأثير الأغذية العالية الطاقة المدعمة بيكتريا البروبيوتك على الحالة الصحية للفئران

د/ حنان سعيد عبد السلام حجان
قسم التغذية وعلوم الأطعمة - مدرس مادة
 بكلية التربية النوعية جامعة المنوفية

د/ نهاد رشاد الطحان
قسم التغذية وعلم الأطعمة، كلية الاقتصاد
المنزلي، جامعة المنوفية، مصر

الملخص العربي

تم في هذا البحث دراسة الأغذية عالية الطاقة (الترمس والحمص وبروتين الصويا) المدعمة ببعض أنواع من البروبيوتك على بعض العوامل البيولوجية والنسجية في ذكور الفئران الطبيعية الألبينو. وتم استخدام أربعة وعشرون من الفئران البالغة تم تقسيمها إلى أربع مجموعات، أيّضّاً، أُقيِّمت أول مجموعات كمجموعة ضابطة في حين أعتيت 3 مجموعات بفترة 20% خليط من (الترمس والحمص وبروتين الصويا) ونسبة من البروبيوتك بنسبة 1,2% لفترة 9 أسابيع. وأظهرت النتائج أن زيادة وزن الجسم كان أكثر بشكل ملحوظ خاصة في 2% خليط من (الترمس والحمص وبروتين الصويا) 2% البروبيوتك المضافة) مقارنة مع المجموعة الضابطة السالبة وأيضاً خفض تركيزات الكوليسترول الكلي والدهون الثلاثية، VLDL، LDL، وانخفاض نشاط الإنزيمات AST و ALT. وعلاوة على ذلك، تسبب في زيادة كبيرة في تركيز -HDL، وكذلك زيادة رواضحة في دلالات المناعة خاصة مع المجموعات التي تغذت على البروبيوتك.

وأظهرت فحص الأنسجة تحسن الخلايا النسجية في كبد الفئران التي تغذت على خليط من الحبوب والبروبيوتك على مختلف المستويات. وتوصي هذه الدراسة أن تناول 2% خليط الترمس والحمص وبروتين الصويا 2% البروبيوتك قد يكون من المفيد في تحسين الهضم وزيادة الوزن بصورة صحية.

الكلمات الرئيسية: الفئران الذكور من نوع الألبينو - الترمس - الحمص - بروتين الصويا - البروبيوتك (لاحظواسليس والبيفيديوكتريا) والتركيب التشريحي.